evp package

Submodules

evp.evp module

class evp.evp.EstimatedValuePredictor(data: DataFrame, train_size=0.8, val_size=0.1, test_size=0.1, model_type: Predictors = Predictors.RandomForest, model_name: str | None = None, limit_classes: bool = False, selected_features: list | None = None, **model_args)[source]

Bases: object

lead_classifier: Classifier
predict(X) list[MerchantSizeByDPV][source]
save_model() None[source]
train(epochs=1, batch_size=None) None[source]

evp.predictors module

class evp.predictors.AdaBoost(model_name: str | None = None, n_estimators=100, class_weight=None, random_state=42)[source]

Bases: Classifier

predict(X) MerchantSizeByDPV[source]
train(X_train, y_train, X_test, y_test, epochs=1, batch_size=None) None[source]
class evp.predictors.Classifier(model_name: str | None = None, *args, **kwargs)[source]

Bases: ABC

load(model_name: str) None[source]
abstract predict(X) list[MerchantSizeByDPV][source]
save(num_classes: int = 5) None[source]
abstract train(X_train, y_train, X_test, y_test, epochs=1, batch_size=None) None[source]
class evp.predictors.KNNClassifier(model_name: str | None = None, random_state=42, n_neighbors=10, weights='distance')[source]

Bases: Classifier

predict(X) list[MerchantSizeByDPV][source]
train(X_train, y_train, X_test, y_test, epochs=1, batch_size=None) None[source]
class evp.predictors.LightGBM(model_name: str | None = None, num_leaves=1000, random_state=42)[source]

Bases: Classifier

predict(X) MerchantSizeByDPV[source]
train(X_train, y_train, X_test, y_test, epochs=1, batch_size=None) None[source]
class evp.predictors.MerchantSizeByDPV(value)[source]

Bases: Enum

An enumeration.

Invalid = -1
L = 3
M = 2
S = 1
XL = 4
XS = 0
class evp.predictors.NaiveBayesClassifier(model_name: str | None = None, random_state=42)[source]

Bases: Classifier

predict(X) list[MerchantSizeByDPV][source]
train(X_train, y_train, X_test, y_test, epochs=1, batch_size=None) None[source]
class evp.predictors.Predictors(value)[source]

Bases: Enum

An enumeration.

AdaBoost = 'AdaBoost'
KNN = 'KNN Classifier'
LightGBM = 'LightGBM'
NaiveBayes = 'Naive Bayes'
RandomForest = 'Random Forest'
XGBoost = 'XGBoost'
class evp.predictors.RandomForest(model_name: str | None = None, n_estimators=100, class_weight=None, random_state=42)[source]

Bases: Classifier

predict(X) MerchantSizeByDPV[source]
train(X_train, y_train, X_test, y_test, epochs=1, batch_size=None) None[source]
class evp.predictors.XGB(model_name: str | None = None, num_rounds=2000, random_state=42)[source]

Bases: Classifier

predict(X) MerchantSizeByDPV[source]
train(X_train, y_train, X_test, y_test, epochs=1, batch_size=None) None[source]

Module contents