evp package
Submodules
evp.evp module
- class evp.evp.EstimatedValuePredictor(data: DataFrame, train_size=0.8, val_size=0.1, test_size=0.1, model_type: Predictors = Predictors.RandomForest, model_name: str | None = None, limit_classes: bool = False, selected_features: list | None = None, **model_args)[source]
Bases:
object
- lead_classifier: Classifier
- predict(X) list[MerchantSizeByDPV] [source]
evp.predictors module
- class evp.predictors.AdaBoost(model_name: str | None = None, n_estimators=100, class_weight=None, random_state=42)[source]
Bases:
Classifier
- predict(X) MerchantSizeByDPV [source]
- class evp.predictors.Classifier(model_name: str | None = None, *args, **kwargs)[source]
Bases:
ABC
- abstract predict(X) list[MerchantSizeByDPV] [source]
- class evp.predictors.KNNClassifier(model_name: str | None = None, random_state=42, n_neighbors=10, weights='distance')[source]
Bases:
Classifier
- predict(X) list[MerchantSizeByDPV] [source]
- class evp.predictors.LightGBM(model_name: str | None = None, num_leaves=1000, random_state=42)[source]
Bases:
Classifier
- predict(X) MerchantSizeByDPV [source]
- class evp.predictors.MerchantSizeByDPV(value)[source]
Bases:
Enum
An enumeration.
- Invalid = -1
- L = 3
- M = 2
- S = 1
- XL = 4
- XS = 0
- class evp.predictors.NaiveBayesClassifier(model_name: str | None = None, random_state=42)[source]
Bases:
Classifier
- predict(X) list[MerchantSizeByDPV] [source]
- class evp.predictors.Predictors(value)[source]
Bases:
Enum
An enumeration.
- AdaBoost = 'AdaBoost'
- KNN = 'KNN Classifier'
- LightGBM = 'LightGBM'
- NaiveBayes = 'Naive Bayes'
- RandomForest = 'Random Forest'
- XGBoost = 'XGBoost'
- class evp.predictors.RandomForest(model_name: str | None = None, n_estimators=100, class_weight=None, random_state=42)[source]
Bases:
Classifier
- predict(X) MerchantSizeByDPV [source]
- class evp.predictors.XGB(model_name: str | None = None, num_rounds=2000, random_state=42)[source]
Bases:
Classifier
- predict(X) MerchantSizeByDPV [source]