K-Sigma Anomaly Detection
KSigmaAnomalyDetection
Bases: DataManipulationBaseInterface
, InputValidator
Anomaly detection with the k-sigma method. This method either computes the mean and standard deviation, or the median and the median absolute deviation (MAD) of the data. The k-sigma method then filters out all data points that are k times the standard deviation away from the mean, or k times the MAD away from the median. Assuming a normal distribution, this method keeps around 99.7% of the data points when k=3 and use_median=False.
Example
from src.sdk.python.rtdip_sdk.pipelines.data_wranglers.spark.data_manipulation.k_sigma_anomaly_detection import KSigmaAnomalyDetection
spark = ... # SparkSession
df = ... # Get a PySpark DataFrame
filtered_df = KSigmaAnomalyDetection(
spark, df, ["<column to filter>"]
).filter()
filtered_df.show()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spark |
SparkSession
|
A SparkSession object. |
required |
df |
DataFrame
|
Dataframe containing the raw data. |
required |
column_names |
list[str]
|
The names of the columns to be filtered (currently only one column is supported). |
required |
k_value |
float
|
The number of deviations to build the threshold. |
3.0
|
use_median |
book
|
If True the median and the median absolute deviation (MAD) are used, instead of the mean and standard deviation. |
False
|
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/k_sigma_anomaly_detection.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
system_type()
staticmethod
Attributes:
Name | Type | Description |
---|---|---|
SystemType |
Environment
|
Requires PYSPARK |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/k_sigma_anomaly_detection.py
84 85 86 87 88 89 90 |
|
filter()
Filter anomalies based on the k-sigma rule
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/k_sigma_anomaly_detection.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|