Skip to content

Normalization MinMax

NormalizationMinMax

Bases: NormalizationBaseClass

Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/normalization/normalization_minmax.py
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class NormalizationMinMax(NormalizationBaseClass):

    NORMALIZED_COLUMN_NAME = "minmax"

    def _normalize_column(self, df: PySparkDataFrame, column: str) -> PySparkDataFrame:
        """
        Private method to revert Min-Max normalization to the specified column.
        Min-Max denormalization: normalized_value * (max - min) + min = value
        """
        min_val = df.select(F.min(F.col(column))).collect()[0][0]
        max_val = df.select(F.max(F.col(column))).collect()[0][0]

        divisor = max_val - min_val
        if math.isclose(divisor, 0.0, abs_tol=10e-8) or not math.isfinite(divisor):
            raise ZeroDivisionError("Division by Zero in MinMax")

        store_column = self._get_norm_column_name(column)
        self.reversal_value = [min_val, max_val]

        return df.withColumn(
            store_column,
            (F.col(column) - F.lit(min_val)) / (F.lit(max_val) - F.lit(min_val)),
        )

    def _denormalize_column(
        self, df: PySparkDataFrame, column: str
    ) -> PySparkDataFrame:
        """
        Private method to revert Z-Score normalization to the specified column.
        Z-Score denormalization: normalized_value * std_dev + mean = value
        """
        min_val = self.reversal_value[0]
        max_val = self.reversal_value[1]

        store_column = self._get_norm_column_name(column)

        return df.withColumn(
            store_column,
            (F.col(column) * (F.lit(max_val) - F.lit(min_val))) + F.lit(min_val),
        )