Arima
ArimaPrediction
Bases: DataManipulationBaseInterface
, InputValidator
Extends the timeseries data in given DataFrame with forecasted values from an ARIMA model. It forecasts a value column of the given time series dataframe based on the historical data points and constructs full entries based on the preceding timestamps. It is advised to place this step after the missing value imputation to prevent learning on dirty data.
It supports dataframes in a source-based format (where each row is an event by a single sensor) and column-based format (where each row is a point in time).
The similar component AutoArimaPrediction wraps around this component and needs less manual parameters set.
ARIMA-Specific parameters can be viewed at the following statsmodels documentation page
Example
import numpy as np
import matplotlib.pyplot as plt
import numpy.random
import pandas
from pyspark.sql import SparkSession
from rtdip_sdk.pipelines.data_quality.data_manipulation.spark.prediction.arima import ArimaPrediction
import rtdip_sdk.pipelines._pipeline_utils.spark as spark_utils
spark_session = SparkSession.builder.master("local[2]").appName("test").getOrCreate()
df = pandas.DataFrame()
numpy.random.seed(0)
arr_len = 250
h_a_l = int(arr_len / 2)
df['Value'] = np.random.rand(arr_len) + np.sin(np.linspace(0, arr_len / 10, num=arr_len))
df['Value2'] = np.random.rand(arr_len) + np.cos(np.linspace(0, arr_len / 2, num=arr_len)) + 5
df['index'] = np.asarray(pandas.date_range(start='1/1/2024', end='2/1/2024', periods=arr_len))
df = df.set_index(pandas.DatetimeIndex(df['index']))
learn_df = df.head(h_a_l)
# plt.plot(df['Value'])
# plt.show()
input_df = spark_session.createDataFrame(
learn_df,
['Value', 'Value2', 'index'],
)
arima_comp = ArimaPrediction(input_df, to_extend_name='Value', number_of_data_points_to_analyze=h_a_l, number_of_data_points_to_predict=h_a_l,
order=(3,0,0), seasonal_order=(3,0,0,62))
forecasted_df = arima_comp.filter().toPandas()
print('Done')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
past_data |
DataFrame
|
PySpark DataFrame which contains training data |
required |
to_extend_name |
str
|
Column or source to forecast on |
required |
past_data_style |
InputStyle
|
In which format is past_data formatted |
None
|
value_name |
str
|
Name of column in source-based format, where values are stored |
None
|
timestamp_name |
str
|
Name of column, where event timestamps are stored |
None
|
source_name |
str
|
Name of column in source-based format, where source of events are stored |
None
|
status_name |
str
|
Name of column in source-based format, where status of events are stored |
None
|
external_regressor_names |
List[str]
|
Currently not working. Names of the columns with data to use for prediction, but not extend |
None
|
number_of_data_points_to_predict |
int
|
Amount of points to forecast |
50
|
number_of_data_points_to_analyze |
int
|
Amount of most recent points to train on |
None
|
order |
tuple
|
ARIMA-Specific setting |
(0, 0, 0)
|
seasonal_order |
tuple
|
ARIMA-Specific setting |
(0, 0, 0, 0)
|
trend |
str
|
ARIMA-Specific setting |
None
|
enforce_stationarity |
bool
|
ARIMA-Specific setting |
True
|
enforce_invertibility |
bool
|
ARIMA-Specific setting |
True
|
concentrate_scale |
bool
|
ARIMA-Specific setting |
False
|
trend_offset |
int
|
ARIMA-Specific setting |
1
|
missing |
str
|
ARIMA-Specific setting |
'None'
|
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/prediction/arima.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
|
InputStyle
Bases: Enum
Used to describe style of a dataframe
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/prediction/arima.py
128 129 130 131 132 133 134 |
|
system_type()
staticmethod
Attributes:
Name | Type | Description |
---|---|---|
SystemType |
Environment
|
Requires PYSPARK |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/prediction/arima.py
190 191 192 193 194 195 196 |
|
filter()
Forecasts a value column of a given time series dataframe based on the historical data points using ARIMA.
Constructs full entries based on the preceding timestamps. It is advised to place this step after the missing value imputation to prevent learning on dirty data.
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A PySpark DataFrame with forecasted value entries depending on constructor parameters. |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/data_manipulation/spark/prediction/arima.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
|