Check Value Ranges
CheckValueRanges
Bases: MonitoringBaseInterface
, InputValidator
Monitors data in a DataFrame by checking the 'Value' column against expected ranges for specified TagNames. Logs events when 'Value' exceeds the defined ranges for any TagName.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
The DataFrame to monitor. |
required |
tag_ranges |
dict
|
A dictionary where keys are TagNames and values are dictionaries specifying 'min' and/or 'max', and optionally 'inclusive_bounds' values. Example: { 'A2PS64V0J.:ZUX09R': {'min': 0, 'max': 100, 'inclusive_bounds': True}, 'B3TS64V0K.:ZUX09R': {'min': 10, 'max': 200, 'inclusive_bounds': False}, } |
required |
Example
from pyspark.sql import SparkSession
from rtdip_sdk.pipelines.monitoring.spark.data_quality.check_value_ranges import CheckValueRanges
spark = SparkSession.builder.master("local[1]").appName("CheckValueRangesExample").getOrCreate()
data = [
("A2PS64V0J.:ZUX09R", "2024-01-02 03:49:45.000", "Good", 25.0),
("A2PS64V0J.:ZUX09R", "2024-01-02 07:53:11.000", "Good", -5.0),
("A2PS64V0J.:ZUX09R", "2024-01-02 11:56:42.000", "Good", 50.0),
("B3TS64V0K.:ZUX09R", "2024-01-02 16:00:12.000", "Good", 80.0),
("A2PS64V0J.:ZUX09R", "2024-01-02 20:03:46.000", "Good", 100.0),
]
columns = ["TagName", "EventTime", "Status", "Value"]
df = spark.createDataFrame(data, columns)
tag_ranges = {
"A2PS64V0J.:ZUX09R": {"min": 0, "max": 50, "inclusive_bounds": True},
"B3TS64V0K.:ZUX09R": {"min": 50, "max": 100, "inclusive_bounds": False},
}
check_value_ranges = CheckValueRanges(
df=df,
tag_ranges=tag_ranges,
)
result_df = check_value_ranges.check()
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/check_value_ranges.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
system_type()
staticmethod
Attributes:
Name | Type | Description |
---|---|---|
SystemType |
Environment
|
Requires PYSPARK |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/check_value_ranges.py
117 118 119 120 121 122 123 |
|
check()
Executes the value range checking logic for the specified TagNames. Identifies and logs any rows where 'Value' exceeds the defined ranges for each TagName.
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: Returns the original PySpark DataFrame without changes. |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/check_value_ranges.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
check_for_out_of_range()
Identifies rows where 'Value' exceeds defined ranges.
Returns: pyspark.sql.DataFrame: A DataFrame containing rows with out-of-range values.
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/check_value_ranges.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
log_out_of_range_values(out_of_range_df)
Logs out-of-range values for all TagNames.
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/check_value_ranges.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|