Flatline Detection
FlatlineDetection
Bases: MonitoringBaseInterface
, InputValidator
Detects flatlining in specified columns of a PySpark DataFrame and logs warnings.
Flatlining occurs when a column contains consecutive null or zero values exceeding a specified tolerance period. This class identifies such occurrences and logs the rows where flatlining is detected.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
The input DataFrame to monitor for flatlining. |
required |
watch_columns |
list
|
List of column names to monitor for flatlining (null or zero values). |
required |
tolerance_timespan |
int
|
Maximum allowed consecutive flatlining period. If exceeded, a warning is logged. |
required |
Example
from rtdip_sdk.pipelines.monitoring.spark.data_manipulation.flatline_detection import FlatlineDetection
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[1]").appName("FlatlineDetectionExample").getOrCreate()
# Example DataFrame
data = [
(1, 1),
(2, 0),
(3, 0),
(4, 0),
(5, 5),
]
columns = ["ID", "Value"]
df = spark.createDataFrame(data, columns)
# Initialize FlatlineDetection
flatline_detection = FlatlineDetection(
df,
watch_columns=["Value"],
tolerance_timespan=2
)
# Detect flatlining
flatline_detection.check()
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/flatline_detection.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
system_type()
staticmethod
Attributes:
Name | Type | Description |
---|---|---|
SystemType |
Environment
|
Requires PYSPARK |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/flatline_detection.py
114 115 116 117 118 119 120 |
|
check()
Detects flatlining and logs relevant rows.
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: The original DataFrame with additional flatline detection metadata. |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/flatline_detection.py
131 132 133 134 135 136 137 138 139 140 141 142 |
|
check_for_flatlining()
Identifies rows with flatlining based on the specified columns and tolerance.
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: A DataFrame containing rows with flatlining detected. |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/flatline_detection.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
|
log_flatlining_rows(flatlined_rows)
Logs flatlining rows for all monitored columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flatlined_rows |
DataFrame
|
The DataFrame containing rows with flatlining detected. |
required |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/flatline_detection.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|