Interval Based
IdentifyMissingDataInterval
Bases: MonitoringBaseInterface
, InputValidator
Detects missing data intervals in a DataFrame by identifying time differences between consecutive measurements that exceed a specified tolerance or a multiple of the Median Absolute Deviation (MAD). Logs the start and end times of missing intervals along with their durations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
Dataframe
|
DataFrame containing at least the 'EventTime' column. |
required |
interval |
str
|
Expected interval between data points (e.g., '10ms', '500ms'). If not specified, the median of time differences is used. |
None
|
tolerance |
str
|
Tolerance time beyond which an interval is considered missing (e.g., '10ms'). If not specified, it defaults to 'mad_multiplier' times the Median Absolute Deviation (MAD) of time differences. |
None
|
mad_multiplier |
float
|
Multiplier for MAD to calculate tolerance. Default is 3. |
3
|
min_tolerance |
str
|
Minimum tolerance for pattern-based detection (e.g., '100ms'). Default is '10ms'. |
'10ms'
|
Returns:
Name | Type | Description |
---|---|---|
df |
Dataframe
|
Returns the original PySparkDataFrame without changes. |
Example
```python from rtdip_sdk.pipelines.monitoring.spark.data_manipulation import IdentifyMissingDataInterval from pyspark.sql import SparkSession
missing_data_monitor = IdentifyMissingDataInterval(
df=df,
interval='100ms',
tolerance='10ms',
)
df_result = missing_data_monitor.check()
```
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/identify_missing_data_interval.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
system_type()
staticmethod
Attributes:
Name | Type | Description |
---|---|---|
SystemType |
Environment
|
Requires PYSPARK |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/identify_missing_data_interval.py
104 105 106 107 108 109 110 |
|
check()
Executes the identify missing data logic.
Returns:
Type | Description |
---|---|
DataFrame
|
pyspark.sql.DataFrame: Returns the original PySpark DataFrame without changes. |
Source code in src/sdk/python/rtdip_sdk/pipelines/data_quality/monitoring/spark/identify_missing_data_interval.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|